

AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering Department of Biocybernetics and Biomedical Engineering

Computational Intelligence

Backpropagation and K-fold Cross Validation And Backpropagation Through Time

Google: Adrian Horzyk

Training Examples

How do we define a training dataset

for supervised training

Training Examples

for supervised training

Training examples are represented as a set of m pairs:

$$(X,Y) = \left\{ \left(x^{(1)}, y^{(1)} \right), \left(x^{(2)}, y^{(2)} \right), \dots, \left(x^{(m)}, y^{(m)} \right) \right\}$$

where

m – is the number of examples

 m_{train} – is the number of training examples

 m_{test} – is the number of test examples

For vectorization, we stack the training examples in the matrix X as well as outputs Y:

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_1^{(m)} \\ \vdots & \ddots & \vdots \\ x_{n_x}^{(1)} & \cdots & x_{n_x}^{(m)} \end{bmatrix} \in \mathbb{R}^{n_x \times m} \qquad Y = \begin{bmatrix} y^{(1)} & \dots & y^{(m)} \end{bmatrix} \in \mathbb{R}^{1 \times m}$$

When we use the Python command to read or set the shape, the notation is:

X. shape = (n_x, m) Y. shape = (1, m)

Functions in Deep Learning

Logistic regression, loss functions and cost

functions to set up the goal of training.

Logistic Regression

For the given x, we get the output prediction $\hat{y} = P(y = 1|x)$ where y is the desired output that will be trained using parameters:

 $w \in \mathbb{R}^{n_x}$

 $b \in \mathbb{R}$

computing the output in the following way:

$$\hat{y} = \sigma \left(w^T x + b \right) = \sigma(z) = \frac{1}{1 + e^{-z}} \in (0, 1)$$

where σ is a sigmoid function:

Computing Sigmoid Function

We use numpy vectorization to compute sigmoid and its derivative for any input vector z:

For
$$z \in \mathbb{R}^n$$
, $sigmoid(z) = sigmoid\begin{pmatrix} z_1 \\ z_2 \\ \dots \\ z_n \end{pmatrix} = \begin{pmatrix} \frac{1}{1+e^{-z_1}} \\ \frac{1}{1+e^{-z_2}} \\ \dots \\ \frac{1}{1+e^{-z_n}} \end{pmatrix}$

$$sigmoid_derivative(z) = \sigma'(z) = \sigma(z)(1 - \sigma(z))$$

(2)

(1)

import numpy as np # this means you can access numpy functions by writing np.function() instead of numpy.function()

```
def sigmoid(z):
    a = 1 / (1 + np.exp(-z)) # Compute the sigmoid of z, where z can be a scalar or numpy array of any size
    return a
```

```
def sigmoid_derivative(z):
    a = sigmoid(z)  # Compute the gradient (slope, derivative) of the sigmoid function with respect to its input z.
    dJa = a * (1 - a)
    return dJa
```

```
z = np.array([-2,-1,0,1, 2])
print ("sigmoid(z) = " + str(sigmoid(z)))
print ("sigmoid_derivative(z) = " + str(sigmoid_derivative(z)))
```

```
sigmoid(z) = [0.11920292 0.26894142 0.5 0.73105858 0.88079708]
sigmoid_derivative(z) = [0.10499359 0.19661193 0.25 0.19661193 0.10499359]
```


Logistic Regression Cost Function

We need to define logistic regression cost function to compute *w* and *b* parameters: NON-CONVEX LOSS FUNCTION For the given training data set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ we want to get $\forall_i \ \hat{y}^{(i)} \approx y^{(i)}$ where $\hat{y}^{(i)} = \sigma(w^T x^{(i)} + b)$ and $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}} \in (0, 1)$ (*i*) is the notation for i-th example $L(\hat{\mathbf{y}},\mathbf{y})$ On this basis, we can define a loss function, called also an error function, for a single example that measures how good the output \hat{y} is when the desired (trained) label is y: The absolute error function $L_1(\hat{y}, y) = |\hat{y} - y|$ or the squared error function: $L_2(\hat{y}, y) = (\hat{y} - y)^2$ might seem like a good choice for this measure, but today we do not usually do this in this way because the optimization problem for it becomes not convex, so the gradient descent algorithm cannot find the global optimum of such loss functions easily! We need to define the loss function in such a way that the function will be convex, so we use: $L_3(\hat{y}, y) = -(y \log \hat{y} + (1-y) \log(1-\hat{y}))$ **Consider two bounding cases:** Ö If y = 0 then $L(\hat{y}, y) = -\log((1 - \hat{y}))$, so to minimize it, $\log((1 - \hat{y}))$ must be large and \hat{y} small ($\hat{y} \to 0$). If y = 1 then $L(\hat{y}, y) = -\log \hat{y}$, so to minimize it, $\log \hat{y}$ and \hat{y} must be large ($\hat{y} \to 1$).

Finally, we define a cost function that measures the error on the entire training data set (for all examples):

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right)$$

Popular Loss Functions

The loss functions are used to evaluate the performance of the models.

The bigger our loss is, the more different our predictions (\hat{y}) are from the true values (y). In deep learning, we use optimization algorithms like Gradient Descent to train models and minimize the cost.

L1 loss is defined as an absolute distance between vectors \hat{y} and y of the size n:

$$L_1(\hat{y}, y) = \sum_{j=0}^n |y_j - \hat{y}_j|$$
(1)

L2 loss is defined as a square distance between vectors \hat{y} and y of the size n:

$$L_2(\hat{y}, y) = \sum_{j=0}^n (y_j - \hat{y}_j)^2$$
(2)

L2 loss is defined between vectors \hat{y} and y of the size n in the following way:

$$L_3(\hat{y}, y) = -\sum_{j=0}^n (y_j log(\hat{y}_j) + (1 - y_j)(1 - log(\hat{y}_j)))$$
(3)

```
M def L1(yhat, y):
    loss1 = np.sum(np.abs(y-yhat))
    return loss1
def L2(yhat, y):
    loss2 = np.sum(np.dot(y-yhat,y-yhat))
    return loss2
def L3(yhat, y):
    loss3 = - np.sum(y * np.log(yhat) + (1-y) * np.log(1-yhat))
    return loss3
```

```
yhat = np.array([.78, .89, .12, .08, .97])
y = np.array([1, 1, 0, 0, 1])
print("Loss1 = " + str(L1(yhat,y)))
print("Loos2 = " + str(L2(yhat,y)))
print("Loos3 = " + str(L3(yhat,y)))
```

Loss1 = 0.55999999999999999 Loos2 = 0.0822 Loos3 = 0.6066693634880955

Gradient Descent Algorithm

We need to derivate activation functions

to use gradient descent training algorithm.

Gradient Descent

We have to minimize the cost function J for a given training data set to achieve as correct prediction for input data as possible:

Here, w is 1D, but its dimension is bigger in real.

To minimize the cost function we calculate partial derivatives where $\frac{dJ(w,b)}{dw}$ and $\frac{dJ(w,b)}{db}$ of Jwith respect to parameters w and b and repeatedly use them to update them with a step α – called a learning rate:

$$w := w - \alpha \frac{dJ(w, b)}{dw}$$

$$b := b - \alpha \frac{dJ(w,b)}{db}$$

Partial derivatives $\frac{dJ(w,b)}{dw} = \frac{\partial J(w,b)}{\partial w}$ and $\frac{dJ(w,b)}{db} = \frac{\partial J(w,b)}{\partial b}$ represent the slopes of the *J* function:

Calculus of the Gradient Descent

The main idea of the Gradient Descent algorithm is to go in the reverse direction to the gradient (the descent slope):

Derivative Rules

The Gradient Descent algorithm uses partial derivatives calculated after the following rules:

Basic Derivatives Rules

Constant Rule: $\frac{d}{dx}(c) = 0$ Constant Multiple Rule: $\frac{d}{dx}[cf(x)] = cf'(x)$ Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$ Sum Rule: $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ Difference Rule: $\frac{d}{dx} [f(x) - g(x)] = f'(x) - g'(x)$ Product Rule: $\frac{d}{dx} [f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$ Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{\sigma(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[\sigma(x)]^2}$ Chain Rule: $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$

Derivative Rules **Exponential Functions** Logarithmic Functions $\frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$ $\frac{d}{dx}(e^x) = e^x$ $\frac{d}{dx}\ln(g(x)) = \frac{g'(x)}{g(x)}$ $\frac{d}{dx}(a^{x}) = a^{x} \ln a$ $\frac{d}{dx}\left(e^{g(x)}\right) = e^{g(x)}g'(x)$ $\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, x > 0$ $\frac{d}{dx}\left(a^{g(x)}\right) = \ln(a) a^{g(x)} g'(x) \left| \frac{d}{dx}\left(\log_a g(x)\right) = \frac{g'(x)}{g(x)\ln a}\right|$ **Trigonometric Functions Inverse Trigonometric Functions** $\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$ $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}\left(\cos^{-1}x\right) = \frac{-1}{\sqrt{1-x^2}}, x \neq \pm 1$ $\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$ $\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}\left(\cot^{-1}x\right) = \frac{-1}{1+x^2}$ $\frac{d}{dx}(\csc x) = -\csc x \cot x$ $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}, x \neq \pm 1, 0$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{\sqrt{x^2-1}}, x \neq \pm 1, 0$ $\frac{d}{dx}(\cot x) = -\csc^2 x$ Hyperbolic Functions Inverse Hyperbolic Functions $\frac{d}{dx}(\sinh x) = \cosh x$ $\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$ $\frac{d}{dx}(\cosh x) = \sinh x$ $\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}, x > 1$ $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$ $\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}, |x| < 1$ $\frac{d}{dx}\left(\operatorname{csch}^{-1} x\right) = \frac{-1}{|x|\sqrt{1-x^2}}, x \neq 0$ $\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$ $\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$ $\frac{d}{dx}(\operatorname{sech}^{-1} x) = \frac{-1}{x\sqrt{1-x^2}}, 0 < x < 1$

 $\frac{d}{dx}(\coth x) = -\operatorname{csch} x$

 $\frac{d}{dx}(\coth^{-1}x) = \frac{1}{1-x^2}, |x| > 1$

Gradient Descent for Logistic Regression

We use a computational graph for the presentation of forward and backward operations for a single **neuron** implementing logistic regression for the weighted sum of inputs *x*:

Use a computational graph to present operations of computation of the logistic regression and its derivatives:

$$\boldsymbol{z} = \boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b}$$

$$\widehat{y} = a = \sigma(z) = \frac{1}{1+e^{-z}}$$

$$L(a, y) = -(y \log a + (1-y)\log(1-a))$$

Finally, we get the update-rules for the logistic regression using the gradient descent algorithm:

$$w_{j} := w_{j} - \alpha \cdot dLw_{j} = w_{j} - \alpha \cdot (a - y) \cdot x_{j}$$

$$b := b - \alpha \cdot dLb = b - \alpha \cdot (a - y)$$

Backpropagation Algorithm

How artificial neural networks are trained?

Network Training Process

Last layers of neural networks for classification or regression tasks are constructed from dense layers which can be trained using the most popular backpropagation algorithm which includes two main phases:

- 1. The input propagation phase propagates the inputs throughout all hidden layers to the output layer neurons. In this phase, neurons calculate weighted sums of inputs taken from the neurons in the previous layer or the input of the network (x₁, ..., x₃).
- 2. The error propagation phase propagates back the errors (delta values) computed on the outputs of the neural network. In this phase, neurons calculate weighted sums of errors (delta values) taken from the neurons of the next layer.

First, the inputs x_1 , x_2 , x_3 stimulate neurons in the first hidden layer. The neurons compute weighted sums S_1 , S_2 , S_3 , S_4 , and output values y_1 , y_2 , y_3 , y_4 that become inputs for the neurons of the next hidden layer:

$$S_n = \sum_{k=1}^3 \mathbf{x}_k \cdot \mathbf{w}_{x_k,n} \qquad \mathbf{y}_n = f(S_n)$$

Second, the outputs y_1 , y_2 , y_3 , y_4 stimulate neurons in the second hidden layer. The neurons compute weighted sums S_5 , S_6 , S_7 , and output values y_5 , y_6 , y_7 that become inputs for the neurons of the output layer:

$$S_n = \sum_{k=1}^4 y_k \cdot w_{k,n}$$
 $y_n = f(S_n)$

Finally, the outputs y_5 , y_6 , y_7 stimulate neurons in the output layer. The neurons compute weighted sums S_8 and S_9 , and output values y_8 , y_9 that are the outputs of the neural network as well:

$$S_n = \sum_{k=5}^7 y_k \cdot w_{k,n} \quad y_n = f(S_n)$$

Next, the outputs y_8 , y_9 are compared with the desired outputs d_8 , d_9 and the errors δ_8 , δ_9 are computed. These errors will be propagated back in order to compute corrections of weights from the connected inputs neurons.

$$\delta_n = d_n - y_n$$

The errors δ_8 and δ_9 are used for corrections of the weights of the inputs connections y_5 , y_6 , y_7 , and propagated back along the input connections to the neurons of the previous layer in order to compute their errors δ_5 , δ_6 , δ_7 :

$$\Delta \mathbf{w}_{k,n} = -\eta \cdot \boldsymbol{\delta}_n \cdot (1 - y_n) \cdot y_n \cdot y_k \qquad \boldsymbol{\delta}_k = \sum_{n=8}^9 \boldsymbol{\delta}_n \cdot \mathbf{w}_{k,n} \cdot (1 - y_n) \cdot y_n / 20$$

Next, the errors δ_5 , δ_6 , and δ_7 are used for corrections of the weights of the inputs connections y_1 , y_2 , y_3 , y_4 , and propagated back along the input connections to the neurons of the previous layer in order to compute their errors δ_1 , δ_2 , δ_3 , δ_4 :

$$\Delta \mathbf{w}_{k,n} = -\eta \cdot \boldsymbol{\delta}_n \cdot (1 - y_n) \cdot y_n \cdot y_k \quad \boldsymbol{\delta}_k = \sum_{n=5}^7 \boldsymbol{\delta}_n \cdot \mathbf{w}_{k,n} \cdot (1 - y_n) \cdot y_n / 21$$

Finally, the errors δ_1 , δ_2 , δ_3 , δ_4 are used for corrections of the weights of the inputs x_1 , x_2 , x_3 :

$$\Delta \mathbf{w}_{k,n} = -\boldsymbol{\eta} \cdot \boldsymbol{\delta}_n \cdot (1 - \boldsymbol{y}_n) \cdot \boldsymbol{y}_n \cdot \boldsymbol{y}_k$$

Back-Propagation Through Time

How to use backpropagation in Recurrent Neural Networks

The backpropagation algorithm can be adapted to RNNs:

The backpropagation algorithm can be adapted to RNNs:

The backpropagation algorithm can be adapted to RNNs:

The backpropagation algorithm can be adapted to RNNs:

27

The backpropagation algorithm can be adapted to RNNs:

Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) computes partial derivatives during the forward phase:

Real-Time Recurrent Learning (RTRL)

Real-Time Recurrent Learning (RTRL) computes partial derivatives during the forward phase:

Comparison of BPTT and RTRL

Both BPTT and RTRL compute the same gradients but in different ways.

They differ in computational complexity:

ectorization

What can we do to speed up computations and

use parallel operations and GPU?

Gradient Descent for Training Dataset

For training dataset consisting of m training examples, we minimize the cost function J:

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y^{(i)})$$
$$\hat{y}^{(i)} = a^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$$
$$\frac{dJ(w,b)}{dw_j} = \frac{1}{m} \sum_{i=1}^{m} \frac{dL(a^{(i)}, y^{(i)})}{dw_j} = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) \cdot x_j^{(i)}$$
$$\frac{dJ(w,b)}{db} = \frac{1}{m} \sum_{i=1}^{m} \frac{dL(a^{(i)}, y^{(i)})}{db} = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)})$$

The final logistic regression gradient descent algorithm will repeatedly go through all training examples updating parameters until the cost function is not small enough.

To speed up computation we should use vectorization instead of for-loops.

repeat I = 1for j = 1 to n_x $dJw_i = 0$ dLb = 0for i = 1 to m $\boldsymbol{z}^{(i)} = \boldsymbol{w}^T \boldsymbol{x}^{(i)} + \boldsymbol{b}$ $a^{(i)} = \sigma(z^{(i)})$ $J += -(y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)}))$ $dJz^{(i)} = a^{(i)} - y^{(i)}$ for j = 1 to n_x $dJw_j + = x_j^{(i)} \cdot dJz^{(i)}$ $dIb += dIz^{(i)}$ J/=mfor j = 1 to n_x $dJw_j/=m$ $w_i = \alpha \cdot dW_i$ dJb/=m $b = \alpha \cdot dIb$ until $J < \varepsilon$

Efficiency of Vectorization

When dealing with big data collections and big data vectors, we definitely should use vectorization (that performs SIMD operations) to proceed computations faster:

```
import numpy as np
import time
a = np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
dot vec = np.dot(a,b)
toc = time.time()
print ("dot vec = " + str(dot vec))
print("Vectorized dot product computation time: " + str(1000 * (toc-tic)) + "ms")
dot for = 0
tic = time.time()
for i in range(1000000):
    dot for += a[i]*b[i]
toc = time.time()
print ("dot for = " + str(dot for))
print("For-looped dot product computation time: " + str(1000 * (toc-tic)) + "ms")
```


Compare time efficacies of these two approaches!

Conclusion:

Whenever possible, avoid explicit for-loops and use vectorization: np.dot(w.T,x), np.dot(W,x), np.multiply(x1,x2), np.outer(x1,x2), np.log(v), np.exp(v), np.abs(v), np.zeros(v), np.sum(v), np.max(v), np.min(v) etc. Vectorization uses parallel CPU or GPU operations (called SIMD – single instruction multiple data) proceed on parallelly working cores.

Vectorization of the Logistic Regression

Broadcasting

How can we multiply data to use different

shapes of structures which do not fit.
Broadcasting in Python

Broadcasting stands for a special operation which multiplies the data in rows and/or columns to fit the size of a bigger structure and allow to perform operations:

BROADCASTING PRINCIPLE:

(m, n) +	$(1, n) \rightarrow (m, n)$	=	(m, n)
(m, n) -	$(1, n) \rightarrow (m, n)$	=	(m, n)
(m, n) *	(1, n) → (m, n)	=	(m, n)
(m, n) /	$(1, n) \rightarrow (m, n)$	=	(m, n)
(m, n) +	$(m, 1) \rightarrow (m, n)$	=	(m, n)
(m, n) -	$(m, 1) \rightarrow (m, n)$	=	(m, n)
(m, n) *	$(m, 1) \rightarrow (m, n)$	=	(m, n)
(m, n) /	$(m, 1) \rightarrow (m, n)$	=	(m, n)

BROADCASTING SAMPLES:

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} + 10 = \begin{bmatrix} 11\\12\\13 \end{bmatrix}$$

where 10 was broadcasted $(1,1) \rightarrow (4,1)$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \\ 14 & 25 & 36 \end{bmatrix}$$

where $\begin{bmatrix} 10 & 20 & 30 \end{bmatrix}$ was broadcasted $(1,3) \rightarrow (2,3)$
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \\ 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \\ 14 & 25 & 36 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 11 & 12 & 13 \\ 24 & 25 & 26 \end{bmatrix}$$

where $\begin{bmatrix} 10\\20 \end{bmatrix}$ was broadcasted (2,1) \rightarrow (2,3)

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 10 & 10 \\ 20 & 20 & 20 \end{bmatrix} = \begin{bmatrix} 11 & 12 & 13 \\ 24 & 25 & 26 \end{bmatrix}$

Broadcasting in numpy

Broadcasting is very useful for performing mathematical operations between arrays of different shapes. The example below show the normalization of the data.

A softmax function is a normalizing function often used in the output layers of neural networks when you need to classify two or more classes:

- for $x \in \mathbb{R}^{1 \times n}$, $softmax(x) = softmax(\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}) = \begin{bmatrix} \frac{e^{x_1}}{\sum_j e^{x_j}} & \frac{e^{x_2}}{\sum_j e^{x_j}} & \dots & \frac{e^{x_n}}{\sum_j e^{x_j}} \end{bmatrix}$
- for a matrix $x \in \mathbb{R}^{m \times n}$, x_{ij} maps to the element in the *i*th row and *j*th column of *x*, thus we have:

$$softmax(x) = softmax \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & x_{m3} & \dots & x_{mn} \end{bmatrix} = \begin{bmatrix} \frac{e^{x_{11}}}{\sum_{j} e^{x_{1j}}} & \frac{e^{x_{12}}}{\sum_{j} e^{x_{2j}}} & \frac{e^{x_{23}}}{\sum_{j} e^{x_{2j}}} & \dots & \frac{e^{x_{2n}}}{\sum_{j} e^{x_{2j}}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{e^{x_{m1}}}{\sum_{j} e^{x_{mj}}} & \frac{e^{x_{m3}}}{\sum_{j} e^{x_{mj}}} & \frac{e^{x_{m3}}}{\sum_{j} e^{x_{mj}}} \end{bmatrix} = \begin{pmatrix} softmax(first row of x) \\ softmax(second row of x) \\ \dots \\ softmax(last row of x) \end{pmatrix}$$

In [27]: def softmax(x):
 # This function calculates the softmax for each row of the input x, where x is a row vector or a matrix of shape (n, m).
 x_exp = np.exp(x)
 x_sum = np.sum(x_exp,axis=1,keepdims=True)
 s = x_exp/x_sum # It automatically uses numpy broadcasting.
 return s

In [29]: x = np.array([
 [0, 9, 3, 0],
 [3, 0, 8, 1]])
print("softmax(x) = " + str(softmax(x)))

softmax(x) = [[1.23074356e-04 9.97281837e-01 2.47201452e-03 1.23074356e-04] [6.68456877e-03 3.32805082e-04 9.92077968e-01 9.04658008e-04]]

Shapes of Matrices

What shapes of matrices do we use and

how can we reshape them

Lists vs. Vectors and Matrices

```
import numpy as np
print("List of values:")
a = np.random.randn(6) # generates list of samples from the normal distribution, while rand from unifrom (in range [0,1))
print(a)
print(a.shape) # the shape suggest that a is a list
                      # the list cannot be transposed because it is not a vector or matrix!
print(a.T)
print(np.dot(a,a.T))
                        # what should it mean?!
                                                                                  Be careful when creating vectors
print("Vector of values:")
                                                                                  because lists have no shape and
b = np.random.randn(6,1) # generates matrix of samples from the normal distribution
print(b)
                                                                                  are declared similarly.
print(b.shape)
                      # the shape suggest that b is a matrix (vector)
                      # the vector can be transposed
print(b.T)
print(np.dot(b,b.T))  # now we get a matrix as a result of multiplication of the vectors
List of values:
[ 1.63130571 1.30039595 -1.42170758 1.28012586 1.63085575 0.64436582]
(6,)
[ 1.63130571 1.30039595 -1.42170758 1.28012586 1.63085575 0.64436582]
11.08706038339276
Vector of values:
[[-1.2426375]
[-0.54254535]
 [ 0.76000053]
 [-0.83861851]
 [ 0.66463 ]
 [-1.60972555]]
(6, 1)
[[-1.2426375 -0.54254535 0.76000053 -0.83861851 0.66463
                                                            -1.60972555]]
[[ 1.54414796 0.6741872 -0.94440516 1.04209881 -0.82589416 2.00030533]
 [ 0.6741872 0.29435546 -0.41233475 0.45498857 -0.36059191 0.87334911]
 [-0.94440516 -0.41233475 0.57760081 -0.63735051 0.50511915 -1.22339227]
 [ 1.04209881 0.45498857 -0.63735051 0.703281
                                                -0.55737102 1.34994564]
 [-0.82589416 -0.36059191 0.50511915 -0.55737102 0.44173303 -1.06987188]
                                                                                                                     40
 [ 2.00030533 0.87334911 -1.22339227 1.34994564 -1.06987188 2.59121633]]
```


[0.5044574] [-0.04263376]]

(5, 1)

Column and Row Vectors

```
import numpy as np
C=np.random.randn(5,1)
D=np.random.randn(1,5)
print("We define matrices and vectors using (m, n) where m is a number of rows, and n is a number of columns")
print(C)
print("... is a column vector")
print(D)
print("... is a row vector")
We define matrices and vectors using (m, n) where m is a number of rows, and n is a number of columns
[[ 0.23665149]
[ 0.45132428]
[-0.89728231]
 [ 0.72912635]
[-0.92627707]]
... is a column vector
[[ 0.99318971 -0.8439588 1.20413677 -1.00233032 -1.55317979]]
... is a row vector
import numpy as np
a = np.random.randn(5) # the list can be reshaped to create a vector
print(a)
print(a.shape)
a = a.reshape((5,1))
print(a)
print(a.shape)
assert(a.shape == (5, 1)) # we can check whether the shape is correct
[-0.07161977 -2.17009596 0.09644837 0.5044574 -0.04263376]
(5,)
[[-0.07161977]
[-2.17009596]
 [ 0.09644837]
```

Reshaping Image Matrices

When working with images in deep learning,

Images are reprezented as a combination of three colours reprezented by three matrices that store the intensities of these colours (Red, Green, and Blue):

					BLUE											
	•		63	32	151	224	53	210	140	154	22	238	3	162		
		GREEN		79	191	163	130	10	240	178	135	99	96	15	39	
			208	49	91	16	79	3	172	138	90	98	71	34	218	199
	REC)	110	165	118	173	24	211	99	229	140	128	232	250	96	176
	222	179	4	211	59	115	73	213	170	101	32	72	13	20	196	155
	169	56	117	232	187	212	146	196	144	240	139	236	32	105	91	100
	148	80	89	1	53	18	201	211	106	249	47	114	252	125	76	248
	180	58	32	9	112	47	94	26	46	164	77	169	244	148	148	142
128	125	156	183	187	184	149	164	132	243	128	168	42	102	95	176	172
	226	249	32	27	181	28	230	233	55	14	129	247	122	178		
	2	117	36	127	41	89	26	213	175	186	104	113	248	70		
	11	83	230	207	234	75	253	63	229	25	116	154			1	
	124	69	210	115	4	40	140	155	243	217	0	85				
						12	28									

we typically reshape them into vector representation using <u>np.reshape()</u>.

Shape and Reshape Vectors and Matrices

We use the numpy functions <u>np.shape()</u> and <u>np.reshape()</u> in deep learning:

Images are usually represented by 3D arrays of shape (*length*, *height*, *depth* = 3). Nevertheless, when you read an image as the input of an algorithm you typically convert it to a vector of shape (*length* * *height* * 3, 1), so you "unroll" (reshape) the 3D arrays into 1D vectors for further processing:

Example 1: If you would like to reshape an array v of shape (a, b, c) into a vector of shape (a*b,c) you would do:

```
v = v.reshape((v.shape[0] * v.shape[1], v.shape[2])) # where v.shape[0] = a ; v.shape[1] = b ; v.shape[2] = c
```

Example 2: If you would like to reshape an array v of shape (a, b, c) into a vector of shape (abc) you would do:

```
v = v.reshape((v.shape[0] * v.shape[1] * v.shape[2], 1)) # where v.shape[0] = a ; v.shape[1] = b ; v.shape[2] = c
```

• Never hard-code the dimensions of the image as a constant but use the quantities you need with image.shape[0], etc.

Images usually are (num px x, num px y, 3) where 3 represents the RGB values: red, green, and blue image2vector(image) = [[0.139] In [33]: [0.381] # This is an exemplary 3 by 3 by 3 array: [0.982] image = np.array([[0.139, 0.381],[0.647] $image = [[0.139 \ 0.381]]$ [0.982, 0.647], [0.251] [0.982 0.647] [0.551] [0.251 , 0.551]], [0.251 0.551]] [0.219] [[0.219, 0.647], [0.647] [[0.219 0.647] [0.703, 0.845], [0.703] [0.703 0.845] [0.845] [0.397, 0.313]], [0.397 0.313]] [0.397] [[0.855, 0.165],[0.313] [[0.855 0.165] [0.313, 0.937], [0.855] [0.313 0.937] [0.165] [0.279, 0.077]]]) [0.279 0.077]]] [0.313] [0.937] print ("image = " + str(image)) [0.279] [0.077]] print ("image2vector(image) = " + str(image2vector(image)))

- X.shape is used to get the shape (dimension) of a vector or a matrix X.
- X.reshape(...) is used to reshape a vector or a matrix X into some other dimension(s).

Simple Network Construction

Construction of the network using stacked vectors and matrices - how do we do it?

Simple Neuron Definition

We defined the fundamental elements and operations on a single neuron as a weighted sum of inputs plus bias and the result is used to calculate the output using an activation function (here a sigmoid function).

The achieved output is used to calculate the loss and corrections.

Simple Neural Network

46

Stacking Neurons Vertically and Vectorizing

 $\xrightarrow{a_1^{[2]} = \hat{y}_1^{(i)}} L(a^{[2]}, y^{(i)})$ **Stacking values and creating** vectors, and stacking vectors and creating matrices is very important from the efficiency of computation point of view because it allows to use parallel operations of GPU!

numbers of layers [I]

numbers of training examples (i)

number of neuron in a layer j

Stacking Examples Horizontally and Vectorizing

Vectorized Operations

Vectorization of Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that your code is computationally efficient, you should use vectorization. Compare the following codes:

```
import time
x1 = [5, 1, 0, 3, 8, 2, 5, 6, 0, 1, 2, 5, 9, 0, 7] # x1 = np.random.rand(1000000)
x^2 = [2, 5, 2, 0, 3, 2, 2, 9, 1, 0, 2, 5, 4, 0, 9] \# x^2 = np.random.rand(1000000)
### CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION ###
tic = time.process time()
dot = 0
for i in range(len(x1)):
    dot+= x1[i] * x2[i]
toc = time.process time()
print ("for-looped dot = " + str(dot) + "\n ---- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED DOT PRODUCT OF VECTORS ###
tic = time.process time()
dot = np.dot(x1,x2)
toc = time.process time()
print ("vectorized dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
for-looped dot = 235
 ----- Computation time = 0.0ms
```

Use more data to see the difference!

```
----- Computation time = 0.0ms
```

vectorized dot = 235

Vectorization of Outer Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that your code is computationally efficient, you should use vectorization. Compare the following codes:

import time

```
x1 = [5, 1, 0, 3, 8, 2, 5, 6, 0, 1, 2, 5, 9, 0, 7] # x1 = np.random.rand(1000000)
x_2 = [2, 5, 2, 0, 3, 2, 2, 9, 1, 0, 2, 5, 4, 0, 9] \# x_2 = np.random.rand(1000000)
### CLASSIC OUTER PRODUCT IMPLEMENTATION ###
tic = time.process time()
outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zeros
for i in range(len(x1)):
    for j in range(len(x2)):
        outer[i,j] = x1[i] * x2[j]
toc = time.process time()
print ("for-looped outer = " + str(outer) + "\n ---- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED OUTER PRODUCT ###
tic = time.process time()
outer = np.outer(x1, x2)
toc = time.process time()
print ("vectorized outer = " + str(outer) + "\n ---- Computation time = " + str(1000*(toc - tic)) + "ms")
                                                                         outer = [[81 18 18 81 0 81 18 45 0 0 81 18 45 0 0]
outer = [[81. 18. 18. 81. 0. 81. 18. 45. 0. 0. 81. 18. 45. 0. 0.]
                                                                           [18 4 4 18 0 18 4 10 0 0 18 4 10
                                                                                                                0
                                                                                                                   01
     4. 4. 18. 0. 18. 4. 10. 0. 0. 18. 4. 10.
 [18.
                                                        0.
                                                            0.1
                                                                           45 10 10 45 0 45 10 25 0 0 45 10 25
                                                                                                                   0]
 [45. 10. 10. 45.
                   0. 45. 10. 25.
                                       0. 45. 10.
                                                  25.
                                                            0.1
                                                                                                                 0
                                   0.
                                                                              000
                                                                                             00
                                                                                                  00
                                                                                                        0
                                                                                                                   01
                                                                            0
                                                                                       0
                                                                                          0
                                                                                                           0
                                                                                                                 0
      0.
           0.
              0.
                   0. 0.
                           0.
                               0.
                                   0.
                                       0. 0.
                                               0.
                                                   0.
                                                        0.
                                                            0.1
                                                                               0
                                                                                  0
                                                                                    0
                                                                                             0
                                                                                               0
                                                                                                  0
                                                                                                     0
                                                                                                        0
                                                                                                                   01
                                                                                       0
                                                                                          0
   0.
       0.
           0.
              0.
                   0. 0. 0.
                               0.
                                   0.
                                       0. 0. 0.
                                                   0.
                                                        0.
                                                            0.1
                   0. 63. 14. 35.
                                                                           63 14 14 63
                                                                                       0 63 14 35
                                                                                                  0 0 63 14
                                                                                                                   01
 [63. 14. 14. 63.
                                   0.
                                       0. 63. 14. 35.
                                                            0.1
                                                        0.
                   0. 45. 10. 25.
                                       0. 45. 10. 25.
                                                            0.1
                                                                                            10 25
                                                                                                     0 45 10
                                                                                                                   0
 45. 10. 10. 45.
                                   0.
                                                        0.
       0.
               0.
                   0. 0. 0.
                               0.
                                   0.
                                       0.
                                           0.
                                               0.
                                                    0.
                                                            0.1
                                                                                             0
                                                                                                0
                                                                                                   0
                                                                                                     0
                                                                                                                   01
   0.
           0.
                                                        0.
   0.
       0.
           0.
              0.
                   0. 0. 0.
                               0.
                                   0.
                                       0.
                                           0. 0.
                                                    0.
                                                        0.
                                                            0.1
                                                                               0
                                                                                  0
                                                                                     0
                                                                                          0
                                                                                             0
                                                                                                0
                                                                                                  0
                                                                                                     0
                                                                                                        0
                                                                                                                   0
   0.
       0.
           0.
               0.
                   0. 0. 0.
                              0.
                                   0.
                                       0.
                                          0.
                                               0.
                                                   0.
                                                        0.
                                                            0.1
                                                                               0
                                                                                  0
                                                                                     0
                                                                                       0
                                                                                          0
                                                                                             0
                                                                                               0
                                                                                                  0
                                                                                                     0
                                                                                                        0
                                                                                                           0
                                                                                                                   0
                                       0. 81. 18. 45.
 81. 18. 18. 81.
                   0. 81. 18. 45.
                                   0.
                                                        0.
                                                            0.1
                                                                           81 18 18 81
                                                                                       0 81 18 45
                                                                                                  0
                                                                                                     0 81
                                                                                                                   0
 [18.
      4.
         4. 18.
                   0. 18. 4. 10.
                                   0.
                                       0. 18. 4. 10.
                                                        0.
                                                            0.1
                                                                           [18
                                                                              4
                                                                                  4 18
                                                                                         18
                                                                                             4 10
                                                                                                   0
                                                                                                                   0
                   0. 45. 10. 25.
                                       0. 45. 10. 25.
                                                                           [45 10 10 45
 45. 10. 10. 45.
                                   0.
                                                            0.1
                                                                                       0 45 10 25
                                                                                                  0
                                                                                                     0 45 10 25
                                                                                                                   0
                   0. 0. 0. 0.
  0.
      0. 0.
              0.
                                   0. 0. 0.
                                               0.
                                                   0.
                                                            0.1
                                                                                                                   01
                                                        0.
                                                                                  0
                                                                                     0
                                                                                          0
                                                                                             0
                                                                                                0
                                                                                                  0
                                                                                                     0
                                                                                                        0
                                                                                                           0
                                                                                                             0
                                                                                                                0
  0. 0. 0. 0. 0. 0. 0. 0.
                                   0. 0. 0. 0.
                                                                                                 0000
                                                   0.
                                                        0.
                                                            0.11
                                                                            0 0 0 0 0 0 0 0
                                                                                                                   011
                                                                                                             0
                                                                                                                0
                                                                                                                            51
 ----- Computation time = 0.0ms
                                                                           ----- Computation time = 0.0ms
```

Vectorization of Element-Wise Multiplication

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that your code is computationally efficient, you should use vectorization. Compare the following codes:

```
import time
x1 = [5, 1, 0, 3, 8, 2, 5, 6, 0, 1, 2, 5, 9, 0, 7] # x1 = np.random.rand(1000000)
x_2 = [2, 5, 2, 0, 3, 2, 2, 9, 1, 0, 2, 5, 4, 0, 9] \# x_2 = np.random.rand(100000)
### CLASSIC ELEMENTWISE IMPLEMENTATION ###
tic = time.process time()
mul = np.zeros(len(x1))
for i in range(len(x1)):
    mul[i] = x1[i] * x2[i]
toc = time.process time()
print ("for-looped elementwise multiplication = " + str(mul) + "\n ---- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process time()
mul = np.multiply(x1,x2)
toc = time.process time()
print ("vectorized elementwise multiplication = " + str(mul) + "\n ---- Computation time = " + str(1000*(toc - tic)) + "ms")
for-looped elementwise multiplication = [10. 5. 0. 0. 24. 4. 10. 54. 0. 0. 4. 25. 36. 0. 63.]
---- Computation time = 0.0ms
vectorized elementwise multiplication = [10 5 0 0 24 4 10 54 0 0 4 25 36 0 63]
 ---- Computation time = 0.0ms
```

Use more data to see the difference!

Vectorization of General Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that your code is computationally efficient, you should use vectorization. Compare the following codes:

```
import time
x1 = [5, 1, 0, 3, 8, 2, 5, 6, 0, 1, 2, 5, 9, 0, 7] # x1 = np.random.rand(1000000)
### CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
W = np.random.rand(3,len(x1)) # Random 3*Len(x1) numpy array
tic = time.process time()
gdot = np.zeros(W.shape[0])
for i in range(W.shape[0]):
    for j in range(len(x1)):
        gdot[i] += W[i,j] * x1[j]
toc = time.process time()
print ("for-looped gdot = " + str(gdot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
### VECTORIZED GENERAL DOT PRODUCT ###
tic = time.process time()
gdot = np.dot(W,x1)
toc = time.process time()
print ("vectorized gdot = " + str(gdot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "ms")
gdot = [18.62176729 22.85934666 20.59097031]
----- Computation time = 0.0ms
                                                Use more data to see the difference!
gdot = [18.62176729 22.85934666 20.59097031]
 ----- Computation time = 0.0ms
```

Stacking and Training in Parallel

How to design the training process in parallel?

Activation Functions of Neurons

```
import numpy as np
def sigmoid(x):
    s = 1 / (1 + np.exp(-x)) # use np.exp to implement sigmoid activation function that works on a vector or a matrix
    return s
def tanh(x):
   t = np.tanh(x) # np.tanh to implement tanh activation function that works on a vector or a matrix
    return t
def relu(x):
   r = np.maximum(0, x) # use np.maximum to implement relu activation function that works on a vector or a matrix
    return r
def leakyrelu(x, slope):
   1 = np.maximum(x * slope, x) # use np.maximum to implement leaky relu activation function that works on a vector or a m
    return 1
def softplus(x):
    p = np.log(1 + np.exp(x)) # use np.log and np.exp to implement softplus activation function that works on a vector or d
    return p
```

We can use different activation functions of neurons in different layers of the network:

Derivatives of Activation Functions

Derivatives are necessary for the use of gradient descent:

• Sigmoid function:

 $g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$

- Tangent hyperbolic function: $g(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$
- Rectified linear unit (ReLu):

g(z) = ReLu(z) = max(0, z)

• Smooth ReLu (SoftPlus):

$$g(z) = SoftPlus(z) = ln(1 + e^{z})$$

$$g(z) = LeakyReLu(z) = \begin{cases} z & if \ z > 0 \\ 0.01z & if \ z \le 0 \end{cases} \quad g'(z) = \frac{dg(z)}{dz} = \begin{cases} 1 & if \ z > 0 \\ 0.01 & if \ z \le 0 \end{cases}$$

$$g'(z) = \frac{dg(z)}{dz} = g(z) \cdot \left(1 - g(z)\right) = a \cdot (1 - a)$$

$$g'(z) = \frac{dg(z)}{dz} = 1 - (g(z))^2 = 1 - a^2$$

 $g'(z) = \frac{dg(z)}{dz} = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$

Derivatives of Activation Functions

Python implementation of derivatives using numpy:

 $dLZ^{[1]} = W^{[2]T} \cdot dLZ^{[2]*} g^{[1]'}(Z^{[1]}) \quad dLZ^{[2]} = dLA^{[2]*} g^{[2]'}(Z^{[2]}) \quad * \text{ element-wise product}$ $dLW^{[2]} = \frac{1}{m} dLZ^{[2]} \cdot A^{[1]T}$ $dLW^{[1]} = \frac{1}{m} dLZ^{[1]} \cdot A^{[0]T}$ $dLb^{[1]} = \frac{1}{m} dLZ^{[1]}$ $dLb^{[2]} = \frac{1}{m} dLZ^{[2]}$

 $X_{1s}^{(i)}$

input layer

 $X_i^{(i)}$

58

Random Initialization of Weights

Parameters must be initialized by small random numbers, but remember that:

- W cannot be initialized to 0:
- $W^{[l]} = np.random.randn((n^{[l]}, n^{[l-1]})) * 0.01$
- b can be initialized to 0:
- $b^{[l]} = np. zero\left(\left(n^{[l]}, 1\right)\right)$

Going to Deeper NN Architectures

Dimensions of Stacked Matrices

Building Blocks of Deep Neural Networks

To design and implement the computation process using parallelism, we define blocks representing stacked neurons in layers:

Stacking Building Blocks Subsequently

Vanishing and Exploding Gradients

What are vanishing and exploding gradients

and how can we deal with them?

Vanishing/Exploding Gradient Problems

In both BPTT and RTRL, we come across exploding and vanishing gradient problems:

Exploding gradients are a problem where large error gradients accumulate and result in very large updates to neural network model weights during training. This effects in instability of the model and difficulty to learn from training data, especially over long input sequences of data.

In order to robustly store past information, the dynamics of the network must exhibit attractors but, in their presence, gradients vanish going backward in time, so no learning with gradient descent is possible!

Vanishing/Exploding Gradient Problems

In both BPTT and RTRL, we come across exploding and vanishing gradient problems:

Exploding gradients are a problem where large error gradients accumulate and result in very large updates to neural network model weights during training. This effects in instability of the model and difficulty to learn from training data, especially over long input sequences of data.

In order to robustly store past information, the dynamics of the network must exhibit attractors but, in their presence, gradients vanish going backward in time, so no learning with gradient descent is possible!

Vanishing/Exploding Gradient Problems

To reduce the vanishing/exploding gradient problems, we can:

Modify or change the architecture or the network model:

- Long Short-Term Memory (LSTM) units
- Reservoir Computing: Echo State Networks and Liquid State Machines

Modify or change the algorithm:

- Hessian Free Optimization
- Smart Initialization: pre-training techniques
- Clipping gradients (check for and limit the size of gradients during the training of the network)
- Truncated Backpropagation through time (updating across fewer prior time steps during training)
- Weight Regularization (apply a penalty to the networks loss function for large weight values)

Vormalization

Normalization usually speeds up training.

Normalization for Efficiency

We use normalization (np.linalg.norm) to achieve a better performance because gradient descent converges faster after normalization:

 $x = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 8 & 2 \end{bmatrix}$

Normalization is changing x to $\frac{x}{\|x\|}$ (dividing each row vector of x by its norm), e.g.

then

lf

$$||x|| = np. linalg. norm(x, axis = 1, keepdims = True) = \begin{bmatrix} \sqrt{29} \\ \sqrt{69} \end{bmatrix}$$
(4)

and

$$x_normalized = \frac{x}{\|x\|} = \begin{bmatrix} \frac{3}{\sqrt{29}} & \frac{2}{\sqrt{29}} & \frac{4}{\sqrt{29}} \\ \frac{1}{\sqrt{69}} & \frac{8}{\sqrt{69}} & \frac{2}{\sqrt{69}} \end{bmatrix}$$
(5)

```
In [25]: def normalizeRows(x):
    # This function normalizes each row of the matrix x, where x is a numpy matrix of shape (n, m)
    x_norm = np.linalg.norm(x,ord=2,axis=1,keepdims=True)
    print("x_norm = " + str(x_norm))
    x = x/x_norm
    return x
```

```
In [26]: x = np.array([
        [3, 2, 4],
        [1, 8, 2]])
print("normalizeRows(x) = " + str(normalizeRows(x)))
```

```
x_norm = [[5.38516481]
[8.30662386]]
normalizeRows(x) = [[0.55708601 0.37139068 0.74278135]
[0.12038585 0.96308682 0.24077171]]
```


(3)

K-fold Cross Validation

How to validate model with the same data as

are used for training it

K-fold Cross-Validation

Cross-Validation strategy allows us to use all available examples for training and validation alternately during the training process.

"K-fold" means that we divide all examples into K disjoint more or less equinumerous subsets. Next, we train a selected model on K-1 subsets K-times and also test this model on an aside subset K-times.

The validation subset changes in the course of the next training steps:

5-FOLD		SUBSETS			
STEPS	1	2	3	4	5
1	TEST	TRAIN	TRAIN	TRAIN	TRAIN
2	TRAIN	TEST	TRAIN	TRAIN	TRAIN
3	TRAIN	TRAIN	TEST	TRAIN	TRAIN
4	TRAIN	TRAIN	TRAIN	TEST	TRAIN
5	TRAIN	TRAIN	TRAIN	TRAIN	TEST

K-fold Cross-Validation

We use different K parameters according to the number of training patterns:

K is usually small $(3 \le K \le 10)$ for numerous training patters.

It lets us validate the model better if it is tested on a bigger number of training patterns.

It also reduces the number of training steps that must be performed.

K is usually big $(10 \le K \le N)$ for less numerous training datasets, where N is the total number of all training patterns.

It allows us to use more patterns for training and achieve a better-fitted model.

5	5-FOLD											
	STEPS	1	L	2	2	3	}	l	1	5		
	1	TEST		TRAIN		TR/	AIN	TR/	AIN	TR	AIN	
	2	TR/	AIN	TEST TRAIN TRAIN		TR/	AIN	TR	AIN	TRAIN TRAIN TRAIN		
	3	TR/	AIN			TE	ST	TR/	AIN			
	4	TR/	AIN			TR/	AIN	TE	ST			
	5	TR/	AIN	TR	AIN	TR/	AIN	TR	AIN	TEST		
	10-FOLD				SUBSETS OF TRAINING PATTERNS							
	STEPS	1 2		3 4		56	7 8		9 10			
	1	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	
	2	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	
	3	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	
	4	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	
	5	TRAIN	TRAIN	TRAIN TRAIN		TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	
	6	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	
	7	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	
	8	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	
	9	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	
	10	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	
K-fold Cross-Validation

N-FOLD					One-e	lemer	nt subs	ets of	the tr	aining	patte	er set o	onsist	ing of	20 pa	tterns				
STEPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
2	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
3	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
4	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
5	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
6	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
7	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN
8	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
9	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
10	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
11	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
12	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
13	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
14	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
15	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN						
16	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN						
17	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN						
18	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN						
19	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN						
20	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST						

N-folds Cross-Validation (one-leave-out strategy) is rarely used because the N-element dataset has to be trained N times. The following disadvantage is that we use only a single pattern in each step for validation of the whole model. Such a result is not representative of the entire collection and the CI model. This solution is sometimes used for tiny datasets.

K-fold Cross-Validation

<u> </u>	-																																							
5-FOLD	D													S	UBSETS	S OF TR	AININ	G PATT	ERNS T	HAT AF	RE RAN	DOML	Y ORDE	RED I	N THE D	ATA SE	<u>т</u>													
STEPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	4 15 16 17 18 19 20 21					21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	
1	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN TRAIN TRAIN TRAIN TRAIN TRAIN				TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN								
2	TRAIN	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN							
3	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN												
4	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN												
5	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TEST	TEST	TEST	TEST	TEST	TEST	TEST												
5-FOLD	D															SU	BSETS (OF TRA	INING I	PATTER	INS																<u> </u>			
STEPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST TRAIN TRAIN TRAIN TRAIN				TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	
2	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	N TRAIN TEST TRAIN TRAIN TRAIN 1				TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	
3	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN
4	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN
5	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST
5-FOL	D															<u> </u>		SU	RSFTS (DF TRA	UNING DATTERNS																<u> </u>	<u> </u>		
STEDS	1	2	3	4	5		5		7		2		<u>م</u>	1	0			11	002101				12					13					14					15		
4	TEST	TRAIN	TRAIN	TRAIN	TRAIN	T	ST ST	TR	AIN	TR		TR		TR									TRAIN			13							TRAIN					TRAIN		
1	TDAIN	TRAIN	TRAIN	TRAIN	TRAIN	тр	MN	т	CT.	тр		тр		тр				TRAIN					TEST			TRAIN							TRAIN			TRAIN				
2	TRAIN	TRAIN	TEL	TRAIN	TRAIN	TD	MN	тр	AIN	T	ECT	тр		тр		TRAIN							TRAIN			TRAIN					TRAIN				TRAIN					
3	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TO		70		TO	AIN	TK.		TO		TRAIN				TRAIN					IEST					IKAIN					TRAIN					
4	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TR		TR	AIN	TR				TR	AIN	I TRAIN				TRAIN				TRAIN					TEST					TRAIN						
5	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TR/	AIN	TR	AIN	TR	AIN	TR	AIN	T	TEST TRAIN					TRAIN						TRAIN					TRAIN					TEST				

The way of selection of the test patterns in each training step should be proportional and representative from each class point of view regardless of the cardinality of classes! We have to consider how the training data are organized in the training dataset:

- Randomly
- Grouped by categories (classes)
- Ordered by values of their attributes
- Grouped by classes and ordered by values of their attributes
- In an unknown way

K-fold Cross-Validation

5-FOLD																		SU	BSETS (OF TRA	INING	PATTER	RNS																	
STEPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN						
2	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST
3	TEST	TRAIN	TRAIN	TRAIN	TEST	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN
4	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN						
5	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN							
																											-													
5-FOLD															UBSET	SOFIK	AINING	J PATT	EKINS I	HATA	KE KAN	DOINIL	YOKU	EKED IN	I I HE L	JATA S														
STEPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN						
2	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST
3	TEST	TRAIN	TRAIN	TRAIN	TEST	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN
4	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN
5	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TEST	TRAIN	TEST	TRAIN	TRAIN	TRAIN	TRAIN	TRAIN	TEST	TRAIN	TRAIN	TEST	TRAIN														

The test patterns can also be selected randomly with or without repetition.

The choice between various options should be made on the basis of the initial order or disorder of patterns of all classes in the dataset to achieve representative selection of the test patterns used for the validated model.

Patterns used for validation should not be repeated in successive test groups, only that we use a less reliable and simpler approach to random choosing of validation patterns.

Optimization Process

How do we improve deep learning models?

CODE

Deep Learning solutions are usually developed in an iterative and empirical process that composes of three main steps:

- Idea when we suppose that a selected model, training method, and some hyperparameters let us to solve the problem.
- Code when we try to code and apply the idea in a real code.
- Experiment prove our suppositions and assumptions or not, and allow to update or change the idea until the experiments return satisfactory results.

BIBLIOGRAPY

- Francois Chollet, "Deep learning with Python", Manning Publications Co., 2018.
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016, ISBN 978-1-59327-741-3.
- 3. Home page for this course:

K

•

- http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
- Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, In Springer Series on Bio- and Neurosystems, Vol 7., Springer, 2019.
- Holk Cruse, <u>Neural Networks as Cybernetic Systems</u>, 2nd and revised edition
- R. Rojas, <u>Neural Networks</u>, Springer-Verlag, Berlin, 1996.
- 8. Convolutional Neural Network (Stanford)
- 9. <u>Visualizing and Understanding Convolutional Networks</u>, Zeiler, Fergus, ECCV 2014.

AGH

BIBLIOGRAPY

10.Home page for this course: <u>http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php</u>

K

•

AGH